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and
AL

= ¢,
Be—jﬂlL

It can be easily shown that, if there is to be a nontrivial
solution for amplitudes A and B, ¢ and L must be related
by the equation

eIl — p2i¢—if1L = ()
which has the solution

B1L = ¢ (26)

The required spacing between the partitions to resonate
the TE(;; mode can be found by solving (26) for L, using
the values of ¢ given in Figs. 4(a) and 4(b). The spacing for
the TEg, resonant mode can be found by simply adding
(n—1)2= to ¢ before solving for L.

The numerical results for the TEq; mode are shown in
Figs. 6(a), 6(b), and (7) in the form of curves of L/b against
kob for typical values of the parameter b/a. The range of
resonant frequencies over which the cavity can be tuned by
varying L/b is a strong function of b/a. The value b/a=1.831
gives the maximum tuning range.

The numerical results shown in Fig. 7 are for b/a=2.082.
This value is commonly used in practice since it corresponds
to locating the cylindrical partition at the radius where the
electric field of the TEq mode has its maximum intensity,
i.e., Ji(T'w) has a maximum at r=>5b/2.082. This value of b/a
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was used in the design of the cavity shown in Fig. 1. The
data point in Fig. 7 corresponding to the measured values
of L/b and kb for this cavity indicates that the theoretical
and experimental results are in good agreement.
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Theory of Direct-Coupled-Cavity Filters

RALPH LEVY, SENIOR MEMBER, IEEE

Abstract—A new theory is presented for the design of direct-coupled-
cavity filters in transmission line or waveguide. It is shown that for a
specified range of parameters the insertion-loss characteristic of these fil-
ters in the case of Chebyshev equal-ripple characteristic is given very
accurately by the formula

R w
Po [wo S (1r ;—0 -I
w

=1 B2l -
+ sin 00' _I

Py
where h defines the ripple level, T, is the first-kind Chebyshev polynomial
of degree n, w/wo is normalized frequency, and 6," is an angle propor-
tional to the bandwidth of a distributed lowpass prototype filter. The ele-
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ment values of the direct-coupled filter are related directly to the step
impedances of the prototype whose values have been tabulated. The theory
gives close agreement with computed data over a range of parameters as
specified by a very simple formula. The design technigque is convenient for
practical applications.

INTRODUCTION

NEW TREATMENT of the classic problem of direct-
A coupled microwave filter design is presented. These

filters consist of TEM transmission line or wave-
guide cavities coupled either by series capacitances or by
shunt inductances, as shown in Figs. 1(a) and 1(b), respec-
tively. It will be assumed that the waveguide or transmission
line is of uniform impedance. The more general case is
perhaps of less importance for economic reasons, but it has
been discussed by Young [1], and the theory presented here
may be extended as described by that author.



LEVY: DIRECT-COUPLED-CAVITY FILTERS

Xi2 Xa3 Xpetn  Xnpat

X,
—_— R

@ o Zo

L_¢,—>L—¢,——>| L—¢——r]

Boi Bz Boa

ol
l— g —k—g,] ke g

Direct-coupled filter, (a) with series capacitance couplings,
and (b) with shunt inductance couplings.

Bn—l,n Bn,ml

Fig. 1.

In this paper frequency will be specified in normalized
form as w/wy, the ratio of the frequency to the synchronous,
resonant, or design center frequency. In the case of wave-
guide filters the normalized frequency must be replaced
everywhere by normalized reciprocal guide wavelength, i.e.,
the quantity Ago/Ag.

In common with all previous theories it is assumed that
the coupling reactances or susceptances behave as perfect
lumped circuit elements. In practice this is not quite the
case, but it would be very difficult to take the actual fre-
quency variation of microwave obstacles into account. Any
deviations from the idealized model are thought to be small,
probably less than the errors inherent in the theory, which
is approximate. This point is justified in a later section.

An exact theory for the idealized model would require
further development of multivariable function theory,
which so far as its application to network problems is con-
cerned is in its infancy [2].

There are two methods of microwave direct-coupled
filter design in general use. The older method of Cohn [3]
is based on a lowpass prototype, and gives good results for
bandwidths up to approximately 20 percent if, in the case
of Chebyshev response, the ripple VSWR ¥ is not too close
to unity. The two conditions under which Cohn’s theory
leads to accurate designs have been given by Young [1] as
follows:

a) For filter bandwidths <20 percent,

V>1+ 2w)? (1)

where V is the specified ripple VSWR and w is the fractional
bandwidth, and

s w(2) .
w

where R is the product of the junction VSWR’s of the associ-
ated quarter-wave prototype filter [1]. The results obtained
by Whiting [4] for seven cavity filters, where (2) always holds,
indicate that (1) may be rather overly optimistic in some
cases; e.g., for ¥'=1.05 Whiting showed that Cohn’s theory
gives good results only to a bandwidth certainly less than
5 percent, whereas (1) suggests that it should hold te 10 per-
cent.

Kz |

The second well-established design theory is that of
Young [1], and is based on the quarter-wave transformer or
distributed lowpass prototype circuit. In this method a suit-
able prototype is chosen, and the filter designed by equating
the synchronous (design) frequency VSWR of each reactive
coupling discontinuity of the filter to that of the correspond-
ing junction VSWR of the prototype filter. The spacings be-
tween the reactances are adjusted to give synchronous
performance. This statement is equivalent mathematically
to Cohn’s original formulas [3], as given here in (21). The
frequency variation of the reactive couplings modify the
known response of the quarter-wave transformer prototype.
The actual response may be estimated utilizing a number of
graphs giving a bandwidth contraction factor and also the
movements of the upper and lower cutoff frequencies of the
filter. In addition, the attenuation in the stopbands of the
filter may be predicted with good accuracy. Although it is
thus possible to predict the performance of a filter based
on a given distributed prototype, it is not posssible to carry
out the reverse operation without using a trial-and-error
procedure.

In summary it may be said that Cohn’s method gives
simple formulas for filter design, but gives poor results for
filters with low VSWR ripple tolerance and moderate band-
widths [(1) and (2)], while Young’s method gives excellent
results for low VSWR ripple tolerances and large bandwidth
specifications, but is not nearly as simple to use as Cohn’s.

The present paper presents a method which tends to com-
bine the desirable features of the previous techniques, i.e.,
it combines the accuracy of Young’s method with the sim-
plicity of Cohn’s, and leads to filter designs which are quite
accurate for all but the most extreme specifications. The
design is based on the quarter-wave transformer or dis-
tributed lowpass prototype filter [5], [6] but all the essential
features (bandwidth, cutoff frequencies, stopband attenua-
tion) are predicted using a single formula.

THEORY

Consider the shunt-inductive-coupled filter of Fig. 1(b).
This must be treated using the concept of the impedance in-
verter [3]. The lowpass prototype filter is shown diagram-
matically in Fig. 2(a), and in exactly equivalent form using
impedance inverters [1], [3] in Fig. 2(b). Here the trans-
mission lines of electrical length ¢, which take the value =
at the band center frequency of the first harmonic, as shown
in Fig. 3, must be regarded as series-type resonators, whereas
the admittance inverter form of this prototype filter has
shunt resonators [7]. The exact Pi equivalent circuit of a
transmission line [3] is given in Fig. 4, where the shunt ele-
ments of the Pi network are very small compared with the
series element. The 1:—1 ideal transformer represents the
phase reversal of a half-wave line, and since it plays no part
in the filter performance it may be neglected.

In order to draw an equivalence between the prototype
circuit and the reactance-coupled filters of Fig. 1, it is
necessary to find a suitable low- to bandpass mapping func-
tion which takes into account the frequency variation of the
reactive couplings.
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Consider the shunt-inductive-coupled filter of Fig. 1(a).
This is redrawn in Fig. 5(a) as a set of impedance inverters
of the type shown in Fig. 5(b), each separated by lines of
electrical length 6. The impedance inverter of Fig. 5(b) con-
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In order to obtain an impedance inverter which is truly fre-
quency-invariant, it is necessary to split matrix (9) into three
parts:

sists of a shunt inductance jX at the center of a short length 0 JmK
of transmission line of electrical length —¢, and was a 1
concept first introduced by Cohn [3]. Now the transfer — 0
matrix of an ideal impedance inverter is given by m
0 +jK — . 1
[ o ] 3) vir o o jx|[—= o
+j/K 0 B vm (1)
while the transfer matrix of the actual impedance inverter 0 1 i 0 0
of Fig. 5(b) is vm LK
si cos¢ — 1
cos ¢ — né —j(sin¢+——¢—->Zo
':A B:l 2X/Z, 2X/Z, @
cC Al j<, cos¢+1)> sin ¢ )
——|sn¢ + ——m— cos ¢ — J
Z, 2X/Z, 2X/Z,

Hence the condition for this to represent an impedance in-
verter is that A=0, i.e.,

- 2X )
= tan—* —— -
¢ 7
The matrix (4) then becomes the same as that of matrix (3)
(with the + sign), where

K =17, ’can% (6)

X K/Z,

Zy 1~ (K/Zy)* @

The above theory ignores the frequency variation of the
shunt inductances, and in practice the K of (6) must be a
function of frequency. Since ¢ is small even for fairly broad-
band filters, (K/Z)?«1, and (7) gives

X K ®)

Zo  Zo
i.e., K and X have approximately the same frequency de-
pendence, namely, directly proportional to frequency. In
order to take this frequency dependence into account it is
necessary to replace K by K(w/wo), where w, is the design or
synchronous frequency, so that matrix (4) is represented
very well by the matrix

0o k2 .

o _[ 0 jmK] ©

o “LimKk 0

JK— 0

wo
where
(6]

m = — (10)

The first and third component matrices of the RHS of (11)
represent ideal transformers with a frequency-dependent
turns ratio, and the central matrix represents the desired
ideal impedance inverter. The equivalent circuit of the
matrix (11) is shown in Fig. 6. The impedance inverter is
given by the shunt inductance X, at the center of the line
—~ o, Where ¢, is given in terms of X, by (5), X, being the
value of X at the synchronous frequency. The next step is to
replace each approximate impedance inverter in Fig. 5(a) by
its more exact representation in Fig. 6, from which a typical
portion of the filter appears in the form shown in Fig. 7.
It is now obvious that in order to draw an equivalence be-
tween this form of the filter and the prototype of Fig. 2(b) it
is necessary only to find the equivalence between the basic
line length 6" of the prototype and the line length ¢ of Fig. 7
bounded by ideal transformers with frequency-dependent turns
ratio. The transfer matrix of any of the latter circuits as
shown boxed within the dotted lines of Fig. 7 is given by

1 -
— 0 cos @ jZysinf || vm 0
vm
— g7 . 1
vm || =—sin 8 cos @ 0 —
Zn \/m
Zo
cos 6 j—sin @
m
=1 . (12)
im sin 6 cos @

0

whereas the transfer matrix of the basic prototype line
length is

cosd  jZpsind

13
7 sin 6 cos &’ (13)
0
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Fig. 8. Equivalence to be established between (a) the circuit repre-
senting a cavity of a reactance-coupled filter and (b) the circuit repre-
senting a cavity of the impedance-inverter-coupled prototype.

The transfer matrices (12) and (13) must be regarded as those
of series resonators of the type shown in Fig. (4), not only
because we are working on the basis of impedance inverters
which require series-type resonators, but also because the
small shunt admittances of the Pi network are swamped by
the large adjacent admittances in the shunt-reactance-
coupled filter. The series-capacitance-coupled filter is a dual
circuit treated by the admittance inverter concept, and leads
to identical results. Hence the equivalence to be established
is shown in Fig. 8. Near the design frequency the shunt arms
of the Pi networks may be neglected, and the equivalence is
established by the equation

" sin @ sin (rw/wp)
Sln = = .
m w/wo

(14)

This is the required equation relating the reactance-coupled
filter to the prototype; it will be shown to give remarkably
good results, considering its simplicity. If the prototype filter
has Chebyshev characteristics given by the following inser-
tion-loss function [5], [6] (defined as the ratio of available
power P, from the generator to the power Py, delivered to

the load),
Pg sin 0’
= 1—|—h2T,,2<_ >,
Py sin 8y’

(15)

then the insertion-loss function of the reactance-coupled fil-
ter is given by

. TW
P sin —
w w
-° =1 h2T,2 xo __.___3_ (16)
I w sin 6y
The bandedge frequencies w; and w, are given by
w w w &)
Dsinm— = — sinw— = sin ¢'. 17)
w1 wo w2 Wo



344

DESIGN PROCEDURE

The design procedure is now fully established. Given the
normalized bandedge frequencies of the filter w;/wo and
ws/we, (17) is solved for 6. The solution is shown graphicaily
in Fig. 9. In an actual specification «; and w, will be given,
but in this case w, is readily found from Fig. 9 by finding the
value of 6" with the required (wa/wo)/(w1/wo) ratio. The pass-
band ripple level is given in terms of the parameter # of (16)
either as

10 logso (1 + A% (dB)

or as a VSWR related to /4 by the equation

V-1

LV (8)

A value of n, the number of cavities in the filter, will be
decided by the stopband attenuation specification, and may
be found readily by application of (16).

The value of 6y is related to the fractional bandwidth of
the equivalent prototype quarter-wave transformer, the
parameter required by the published tables [5], [6] by the
equation

464’
wy (or BW) = — -

™

(19)

Hence the three parameters necessary to specify the proto-
type filter—mnamely, n, w, and ripple VSWR-—have been
established, and the step impedances or junction VSWR’s
of this prototype are then either found from the tables [5],
[6] or determined by a suitable approximation [as in (27)].!
The reactance values of the reactance-coupled filter are de-
termined from the prototype junction VSWR’s as described
by Young [1], namely, by equating these to the VSWR’s of
corresponding reactance couplings of the actual filter, lead-
ing to the equation (refer to Fig. 1)

Zs Y,

Xi,i+1

1
=V ——= (20)

Bi s Vi
The electrical lengths ¢, of the cavities are given by the
well-known formulas [1], [3]

where i=1,2, - - - n.

171t is worth recording a correction to (22) of reference [6], which
should read

Zy = Zn_ri1 (n odd); Zr = 8/Zp—rs1 (n even).

A further error occurs in Table 8 where results in BW columns 0.20 to
0.70 for VSWR values 1.01 and 1.02 should be interchanged.
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CoMPARISON WITH THEORIES OF COHN AND YOUNG

Cobn’s results [3] may be obtained by approximating
sin [m(w/wo)] around w=w, by 7 [(w/we)—1]. The angle 6y’ is
given by (19). Since the fractional bandwidth w of a narrow-
band filter is related to w, by a factor 2, we have

8 =—— = o2 = e

2 T —*(wz o . (22)

With the further approximation (justified for narrowband
filters) sin 8,'~80', (17) reduces to

wo W1 wo Wz (wz—w1)
r—(l—-—)=—-r—(1—-—)=pr——=
w1 wo ws w1 (w2 + w1)

leading to the equation (Fig. 10 in Cohn [3])

2wiws

(23)

wy =
w1 + we
Cohn’s low- to bandpass transformation is obtained from
(16), and is given by carrying out the abeve approximation to
the equation

. T

, sin —
w wo wo
w1' w sin 90’

which, using (23), reduces to
1 1
’ 2 D
w w wo
w’ ( 1 1 )
w1 (G))

This is (4) in Cohn [3] with guide wavelength replaced by
reciprocal of frequency, as required.

(24)
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Cohn’s expressions for the coupling reactances are ob-
tained by using the formulas for the junction VSWR’s in the
limiting case of a narrowband distributed lowpass prototype
filter as given by Young [1], i.e.,

2 91601' g1

VOI = Vn,n+1 = =

T W C
, (25)

v 4 wy'? _ gingi
i+l = ﬁ —?;Z—gH-lgi = c
fori=i, 2, - - -, (m—1), where

e 2 (26)

wi' wp + w

Here the g, are the normalized elements of the lumped-ele-
ment lowpass prototype filter [2]. The coupling reactances
are given by (20), i.e.,

Z Yo /@ T
Xo Ba Ve Vg
Zo Y, 4/.chT _ 1/_(7“
Xiip B Bi i1 h C gifiy1 @)
fore=1,2,---,(n—1)
Zo _ Yo _ fo_  JO¢
Xomtr  Bamir 1/ T

where r is the terminating resistance of the prototype filter.
Equations (26) and (27) are given in Figs. 5 and 10 in Cohn
[3], completing the derivation of all his formulas. These are
seen to be limiting forms of the new formulas in the case of
narrowband filters after approximating sin (mw/wg) by
w[(w/wo)—1]. One result of this approximation is that the
theory fails to predict the harmonic passbands of the reac-
tance-coupled filter.

YouNG’s THEORY

Young [1] bases his theory on the distributed lowpass
prototype but needs to guess a value of 6" to obtain a trial
prototype. He presents graphs of bandwidth contraction fac-
tor and movement of band center frequency to predict the
“distortion” caused by the frequency variation of the cou-
pling reactances, which in the new theory is given auto-
matically by (16). The information on bandwidth contrac-
tion factor was obtained by analyzing a number of filter de-
signs by digital computer. If the design specification is not
met by the first prototype, a modified prototype is chosen,
and the above process repeated. The theory will give good
results to bandwidths so large that the bandpass filter be-
comes a highpass filter for all practical purposes.

The theory presented in the present paper is limited to
filters up to approximately 40-percent bandwidth, which will
cover all normal requirements. Discussions follow on the
method adopted to test the theory, the errors involved, and
the theory’s range of applicability.
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Fig. 10. Theoretical and computed results of a filter expected to
give good agreement (Example 1 of text).

LIMITATIONS ON THE VALUE OF EXPERIMENTAL
AS COMPARED WITH COMPUTED RESULTS

For several reasons it would be rather difficult to establish
the validity of a microwave filter theory by measurements
on actual filters. One must be quite sure that the obstacle
susceptances actually have the assumed values; it is difficult
and expensive to achieve the very close tolerances which
must be held, and a large number of such filters would be
required to check the theory over a wide range of the various
parameters. Thus in order to test the validity of the theory,
the practice of previous authors has been adopted [1], [3]
and the theoretical predictions compared with the response
of idealized model filters found by computation on a high-
speed digital computer. Experience has shown that actual
filters give performances in very close agreement with the
computed results. The only practical case published which
appears to show a marked deviation [4] is open to some
doubt since in that case the inductive susceptances were
designed by use of an approximate theoretical formula
rather than by direct measurement.

The computer technique is open to the objection that ac-
tual filters differ from the idealized model in that the obstacle
susceptances are not exactly proportional to w (for capacitive
gap filters) or to )\, (for waveguide filters). It can be shown,
however, that the deviation of a practical filter from the
idealized model is quite small, and is in a direction which
tends to improve the agreement between practice and theory.
Take, for example, the case of direct-coupled inductive-iris
waveguide filters. Inspection of graphic data [8] shows that
the deviation of the shunt susceptance values from their
idealized values over a 30-percent guide-wavelength band
is approximately 1 percent at the edges of this band. Since
this error not only is small but also has the same sign for
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Fig. 11. Theoretical and computed results of a filter designated as a

borderline case (Example 2 of text).

all the obstacles in the filter, it could not be expected to
cause any significant error in the ripple level, but only in
the cutoff frequencies. The effect of deviation from lumped
susceptance behavior is to introduce an additional frequency
transformation which distorts the frequency axis slightly.
For inductive irises in waveguide, the susceptances are
slightly larger than their idealized values at frequencies be-
low the midband frequency, and slightly smaller above the
midband frequency. Hence the lower frequency cutoff is
moved upward in frequency, and the higher frequency cutoff
is also moved upward in frequency. The overall bandwidth
of the filter tends to remain as predicted by the idealized
model. The attenuation on the low-frequency side of the
filter is increased, and on the high-frequency side it is de-
creased. Inspection of the results discussed in the following
section and presented in Figs. 10, 11, and 12 reveals that this
tendency would, fortuitously, give better agreement be-
tween the theory and the computed results. The case de-
picted in Fig. 12 illustrates the effect most clearly. The prac-
tical filter would be expected to have cutoff frequencies
approximately 1 percent higher than those predicted by the
idealized model, which would bring the practical perfor-
mance into closer agreement with the theory.

It would be interesting to carry out a more detailed in-
vestigation of the computed performance of the idealized
model filters compared with computed practical cases where
the actual variation of obstacle susceptance with frequency
[8] would be taken into the computer program.
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LiMITATIONS OF THE NEW THEORY

Thus in order to test the validity of the theory, a very
large number of filters were designed for n=2 to n=12
elements having fractional bandwidths ranging from 10 to 43
percent and VSWR ripple levels from 1.01 to 1.50. The
computed response of each filter was then compared with
the theoretical response given by (16). It is found that except
in extreme cases, as specified below, the bandedge frequen-
cies and stopband attenuation are in excellent agreement
with the theory. Young [1] had established that the passband
ripple levels are reproduced quite accurately, and this was
confirmed except for very low VSWR levels (1.01 or 1.02) for
moderate or large bandwidth filters, where the small errors
in the theory tend to produce a slightly higher ripple level
in practice. As a criterion by which to establish the theory’s
range of applicability it was decided to classify as acceptable
only those designs within about + 10-percent deviation
from the theoretical both for bandwidth and for attenuation
level (in dB) far into the stopbands. Most filters give results
well inside these limits, but Table I indicates the limiting
cases. The interpretation of Table I is that for a given num-
ber of cavities and a given bandwidth, the ripple VSWR must
be greater than the designated value. It has been established
that all the information given in Table I may be summarized
by a very simple rule, namely, that the criterion requires the
value of R (the product of the prototype junction VSWR’s
[1], [5]) or of L (the maximum stopband attenuation level
of the prototype as given in the tables of reference [6]) to be
greater than a value given by

6n dB forn = 2
7n dB forn = 3
8n dB for n > 4.

B+ 1)°

L =10 ].Oglo T = (28)
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TABLE I

MinmuM Passeanp VSWR Ri1pPLE LEVELS FOR FILTERS GIVING AGREE-
MENT WITH THEORY TO WITHIN APPROXIMATELY =+ 10-PERCENT
DEVIATION IN BANDWIDTH AND IN STOPBAND ATTENUA-

TION LEVEL IN dB. [SEE ALSO (28).]

w, Or BW 02 103|04)]05]06] 07|08
6y 9 13.5 |18 22.5 |27 31.5 |36
Bandwidth (%) | 10.03|15.10|20.23|25.49|30.93|36.70| 43.12

No. of Cavities
@]
2 1.10 1.50
3 1.20
4 1.05 1.10 1.50
5 1.01| 1.02] 1.10| 1.20
6 1.01| 1.02 1.20
7 1.01 1.10| 1.50| 1.50
8 1.05
9
10 1.05
11
12 1.05

Some examples of the results given by the theory will now
be presented. Most specifications for direct-coupled filters
are for narrow or moderate bandwidths, i.e., 10 percent or
less, and for these cases the agreement between the theo-
retical formula (16) and the computed results is almost per-
fect. Therefore, only one example of such a filter will be
given, the remaining examples indicating the limitations of
the theory in extreme cases.

EXAMPLES

I) Bandwidth 10 Percent, Six Cavities, Chebyshev Ripple
VSWR 1.10

This design is one considered by previous authors [1], [3]
and each obtained satisfactory results. Here, in order to
avoid interpolation from tabulated data, the bandedges are
chosen to be at values wi/wo=0.9524, ws/we=1.0527, which
corresponds to a value of 8" of exactly 9°. The comparison
between computed values and theory is given in Fig. 10,
which also indicates points computed by Cohn’s formula.
It will be seen that the theory predicts the location of the
bandedges exactly, although the passband response is
slightly distorted from the correct equal-ripple behavior.
The maximum deviation from theory of the attenuation in
the stopband is less than 1 dB to an attenuation level of at
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least 66 dB on the low-frequency side and to at least 50 dB
on the high-frequency side.

2) Bandwidth 20 Percent, Four Cavities, Chebyshev Ripple
VSWR 1.10

This example, which is designated as a limiting case in
Table I, was also used as an illustration by Young [1].
Here the theoretical design based on 6/ =18° gives wi/wo
=0.9093, wy/wo=1.1116, i.e., a bandwidth of 20.23 percent.
The theoretical and computed values are shown in Fig, 11.
The computed results show the bandedges as 0.909 and 1.103,
giving an actual bandwidth of 19.4 percent. Young’s theory
[1] based on the same prototype predicts the bandedges at
0.902 and 1.110, i.e., a bandwidth of 20.8 percent, which is
slightly less accurate than the present theory in this in-
stance.

3) Bandwidth 30 Percent, Four Cavities, Chebyshev Ripple
1.05

This specification lies well outside the limits of applicabil-
ity as designated in Table I or by (28), and would not be
expected to give good results. A very similar example was
taken by Young [1], the difference being that the VSWR
specification was chosen as 1.07. The comparison between
theory and computed values in Fig. 12 shows that the present
theory predicts the position of the bandedges remarkably
closely, i.e., 0.860 compared with the theoretical 0.8707 at
the low-frequency edge, and 1.165 compared with 1.180 at
the high-frequency edge. The bandwidth is almost correct.
The most serious deviation from theory occurs in the predic-
tion of the stopband attenuation at low frequencies. In this
respect, however, the theory gives more accurate results
than formula (13) of Young [1]| which predicts an even
higher attenuation at low frequencies and negative attenua-
tion at high frequencies (e.g., —6 dB at w/wo=1.5).

CONCLUSIONS

A new design theory for direct-coupled microwave filters
has been shown to give good agreement with computed re-
sponse characteristics. Basically the theory is derived by
combining and extending previous work done by Cohn [3]
and Young [1]. It has been shown that the essential char-
acteristics of direct-coupled filters may be predicted accu-
rately by a single insertion-loss formula (16). The values of
the coupling reactances are derived from published tables of
distributed lowpass prototype filters [5], [6], or in narrow-
band cases which may not be tabulated by use of approxi-
mate but very accurate formulas (25). A simple relationship
(28) specifies the range of design parameters (number of
cavities, bandwidth, ripple VSWR) for which the insertion-
loss formula (16) may be expected to give good results for
prediction of the bandedge frequencies and for the stopband
attenuation.

Since it is based on a single insertion-loss formula and on
tabulated or easily derivable prototype filter parameters, the
design technique is very suitable for practical applications.
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A Frequency Transformation for Commensurate
Transmission-Line Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract—The frequency transformation W=1/S, where S =tanh(yL),
is investigated for commensurate transmission-line networks consisting of
stubs, resistors, ideal transformers, and unit elements. This transforma-
tion takes transmission-line transformers into transmission-line lowpass
filters and vice versa, lowpass (or bandstop) filters into highpass (or band-
pass) filters and vice versa, and elliptic-function bandstop filters into
elliptic-function bandpass filters and vice versa. The practicality of the
transformation lies in the fact that element values of the transformed net-
work are easily related to the corresponding element values of the original
network. The transformation is useful because it provides an alternative
viewpoint for synthesis, and because it reduces the number of tables of
designs needed for various filter types. Several examples of designs using
the transformation are given. One design is an unusual narrowband 3-dB
directional coupler.

1. INTRODUCTION

REQUENCY transformations are commonly used in
Flumped-element network theory to convert a given

filter network into a related filter network. For exam-
ple, an often used frequency transformation is [1], [2]

s — As, (1

where the symbol — stands for “is replaced by,” 4 is a
constant, the primed variable is that of the original network,
and the unprimed variable is that of the transformed net-
work.! Transformation (1) is used to scale the bandwidth of
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1 Throughout this paper we shall use primed variables to represent
parameters of the original network and unprimed variables for those in
the tranformed network.

the existing network to another preferred value. Other com-
monly used frequency transformations in lumped filter
theory are [1], [2]

(lowpass to highpass @)

!
s’ A/s transformation)

, s “o (lowpass to bandpass 3)
§ow < wo T s transformation)

, 1
s (lowpass to bandstop 4)

w <i> + <ﬂ> transformation).
wWo 8

It is emphasized that in all cases the usefulness of these trans-
formations lies in the fact that their effects on the responses
of the network are easily related to changes in the element
values of the network. Because such frequency transforma-
tions are available, a given lowpass filter may function as a
prototype for a number of different types of filters, obviating
the compilation of a multitude of designs for lowpass, high-
pass, bandpass, and bandstop filters,

Analogous transformations would be equally useful for
commensurate transmission-line networks, if they could be
developed. For the special class of commensurate transmis-
sion-line networks consisting of open- and short-circuited
stubs, ideal transformers, and resistors, but without unit
elements [18] (i.e., quarter-wavelength lines), transforma-
tions (1) through (4) can indeed be used. In most cases, how-
ever, realization of commensurate transmission-line net-
works without unit elements is impractical or impossible.
Unfortunately, in the more general case of commensurate
transmission-line networks, consisting of open- and short-
circuited stubs, ideal transformers, resistors, and unit ele-



