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and

A@rL
= ei$.

Be–A5’lL

It can be easily shown that, if there is to be a nontrivial

solution for amplitudes A and B, @ and L must be related

by the equation

~~D15— eZ~b–ifi15= ()

which has the solution

B, L=c#. (26)

The required spacing between the partitions to resonate

the TEO1l mode can be found by solving (26) for L, using

the values of@ given in Figs. 4(a) and 4(b). The spacing for

the TEOI. resonant mode can be found by simply adding

(n– l)27r to @before soIving for L.

The numerical results for the TEO1l mode are shown in

Figs. 6(a), 6(b), and (7) in the form of curves of L/b against

hb for typical values of the parameter b/a. The range of

resonant frequencies over which the cavity can be tuned by

varying L/b is a strong function of b/a. The value b/a= 1.831
gives the maximum tuning range.

The numerical results shown in Fig. 7 are for b/a= 2.082.

This value is commonly used in practice since it corresponds

to locating the cylindrical partition at the radius where the

electric field of the TEO1 mode has its maximum intensity,

i.e., J@lr) has a maximum at r= b/2.082. This value of b/u

was used in the design of the cavity shown in Fig. 1. The

data point in Fig. 7 corresponding to the measured values

of L/b and kob for this cavity indicates that the theoretical

and experimental results are in good agreement.
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Theory of Direct-Coupled-Cavity Filters

RALPH LEVY, SENIOR MEMBER, IEEE

Abstract-A new theory is presented for the design of direct-coupled-

cavity filters in transmission line or waveguide. It is shown that for a

specified range of parameters the insertion-loss characteristic of these til-

ters in the case of Chebyshev equal-ripple characteristic is given very

accurately by tbe formula

g=l+h2T.2[3‘i”(”:)]
OJ SiU e@’

where h defines the ripple level, Z’. is the first-kind Chebyshev polynomial

of degree n, CJ/CJO is normalized frequency, and tIO’ is an angle propor-

tional to the bandwidth of a distributed lowpass prototype filter. The ele-
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ment vaks of the direct-coupled filter are related directly to the step

impedances of the prototype whose values have been tabulated. The theory

gives close agreement with computed data over a range of parameters as

specified by a very simple formula. The design technique is convenient for

practical applications.

INTRODUCTION

A

NEW TREATMENT of the classic problem of direct-

coupled microwave filter design is presented. These

filters consist of TEM transmission line or wave-

guide cavities coupled either by series capacitances or by

shunt inductances, as shown in Figs. l(a) and l(b), respec-

tively. It will be assumed that the waveguide or transmission

line is of uniform impedance. The more general case is

perhaps of less importance for economic reasons, but it has

been discussed by Young [1], and the theory presented here

may be extended as described by th~t author.
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Fig. 1. Direct-coupled filter, (a) with series capacitance couplings,

and (b) with shunt inductance couplings.

In this paper frequency will be specified in normalized

form as u/wO, the ratio of the frequency to the synchronous,

resonant, or design center frequency. In the case of wave-

guide filters the normalized frequency must be replaced

everywhere by normalized reciprocal guide wavelength, i.e.,

the quantity AgJ~g.

In common with all previous theories it is assumed that

the coupling reactance or susceptances behave as perfect

lumped circuit elements. In practice this is not quite the

case, but it would be very difficult to take the actual fre-

quency variation of microwave obstacles into account. Any

deviations from the idealized model are thought to be small,

probably less than the errors inherent in the theory, which

is approximate. This point is justified in a later section.

An exact theory for the idealized model would require

further development of multivariable function theory,

which so far as its application to network problems is con-

cerned is in its infancy [2].

There are two methods of microwave direct-coupled

filter design in general use. The older method of Cohn [3]

is based on a Iowpass prototype, and gives good results for

bandwidths up to approximately 20 percent if, in the case

of Chebyshev response, the ripple VSWR V is not too close

to unity. The two conditions under which Cohn’s theory

leads to accurate designs have been given by Young [1] as

follows :

a) For filter bandwidths <20 percent,

v >1 + (2W)2 (1)

where V is the specified ripple VSWR and w is the fractional

bandwidth, and

b)
1“

()
R>> —

w
(2)

where R is the product of the junction VSWR’S of the associ-
ated quarter-wave prototype filter [1]. The results obtained

by Whiting [4] for seven cavity filters, where (2) always holds,

indicate that (1) may be rather overly optimistic in some

cases; e.g., for V= 1.05 Whiting showed that Cohn’s theory

gives good results only to a bandwidth certainly less than

5 percent, whereas (1) suggests that it should hold to 10 per-

cent.

The second well-established design theory is that of

Young [1], and is based on the quarter-wave transformer or

distributed Iowpass prototype circuit. In this method a suit-

able prototype is chosen, and the filter designed by equating

the synchronous (design) frequency VSWR of each reactive

coupling discontinuity of the filter to that of the correspond-

ing junction VSWR of the prototype filter, The spacings be-

tween the reactance are adjusted to give synchronous

performance. This statement is equivalent mathematically

to Cohn’s original formulas [3], as given here in (21). The

frequency variation of the reactive couplings modify the

known response of the quarter-wave transformer prototype.

The actual response may be estimated utilizing a number of

graphs giving a bandwidth contraction factor and also the

movements of the upper and lower cutoff frequencies of the

filter. In addition, the attenuation in the stopbands of the

filter may be predicted with good accuracy. Although it is

thus possible to predict the performance of a filter based

on a given distributed prototype, it is not posssible to carry

out the reverse operation without using a trial-and-error

procedure.

In summary it may be said that Cohn’s method gives

simple formulas for filter design, but gives poor results for

filters with low VSWR ripple tolerance and moderate band-

widths [(1) and (2)], while Young’s method gives excellent

results for low VSWR ripple tolerances and large bandwidth

specifications, but is not nearly as simple to use as Cohn’s.

The present paper presents a method which tends to com-

bine the desirable features of the previous techniques, i.e.,

it combines the accuracy of Young’s method with the sim-

plicity of Cohn’s, and leads to filter designs which are quite

accurate for all but the most extreme specifications. The

design is based on the quarter-wave transformer or dis-

tributed Iowpass prototype filter [5], [6] but all the essential

features (bandwidth, cutoff frequencies, stopband attenua-

tion) are predicted using a single formula.

THEORY

Consider the shunt-inductive-coupled filter of Fig. l(b).

This must be treated using the concept of the impedance in-

verter [3]. The lowpass prototype filter is shown diagram-

matically in Fig. 2(a), and in exactly equivalent form using

impedance inverters [1], [3] in Fig. 2(b). Here the trans-

mission lines of electrical length 19’,which take the value r

at the band center frequency of the first harmonic, as shown

in Fig. 3, must be regarded as series-type resonators, whereas

the admittance inverter form of this prototype filter has

shunt resonators [7]. The exact Pi equivalent circuit of a

transmission line [3] is given in Fig. 4, where the shunt ele-

ments of the Pi network are very small compared with the

series element. The 1: — 1 ideal transformer represents the
phase reversal of a half-wave line, and since it plays no part

in the filter performance it may be neglected.

In order to draw an equivalence between the prototype

circuit and the reactance-coupled filters of Fig. 1, it is

necessary to find a suitable low- to bandpass mapping func-

tion which takes into account the frequency variation of the

reactive couplings.
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Consider the shunt-inductive-coupled filter of Fig. l(a). In order to obtain an impedance inverter which is truly fre-

This is redrawn in Fig. 5(a) as a set of impedance inverters quency-invariant, it is necessary to split matrix (9) into three

of the type shown in Fig. 5(b), each separated by lines of parts:

electrical length O. The impedance inverter of Fig. 5(b) con-

sists of a shunt inductance jX at the center of a short length O jmK
of transmission line of electrical length —#, and was a

[1
1

concept first introduced by Cohn [3]. Now the transfer — O

matrix of an ideal impedance inverter is given by mK

while the transfer matrix of the actual impedance inverter

of Fig. 5(b) is

Hence the condition for

verter is that A = O, i.e.,

sin @

[1[(

(

Coscp-1
cos+— ——————

AB
–j sin@ +

‘1

Zo
2x/zo 2x/zcl

CA=”
.

Cos@+ 1)
—~ sin++

)

sin 4
cosl$— ———

Zo 2x/zo 2x/zLl J

this to represent an impedance in-

.7

(5)

The matrix (4) then becomes the same as that of matrix (3)

(with the + sign), where

x K/Z,
—.
zfJ 1 – (K/ZO) 2 “

The above theory ignores the frequency

shunt inductances, and in practice the K of (6) must be a

function of frequency. Since@ is small even for fairly broad-

(6)

(7)

variation of the

band filters, (@Zo)2<< 1, and (7) gives

XK
_~_.._
Zll Zo

(8)

i.e., K and X have approximately the same frequency de-

pendence, namely, directly proportional to frequency. In

order to take this frequency dependence into account it is
necessary to replace K by K(w/so), where W. k the design or

synchronous frequency, so that matrix (4) is represented

very well by the matrix

[

o jmK——
1

(9)
j/mK O

where

(lo)

(4)

The first and third component matrices of the RHS of(11)

represent ideal transformers with a frequency-dependent

turns ratio, and the central matrix represents the desired

ideal impedance inverter. The equivalent circuit of the

matrix (11) is shown in Fig. 6. The impedance inverter is

given by the shunt inductance XO at the center of the line

– @o, where @Ois given in terms of XO by (5), XO being the

value of X at the synchronous frequency. The next step is to

replace each approximate impedance inverter in Fig. 5(a) by

its more exact representation in Fig. 6, from which a typical

portion of the filter appears in the form shown in Fig. 7.

It is now obvious that in order to draw an equivalence be-

tween this form of the filter and the prototype of Fig. 2(b) it

is necessary only to find the equivalence between the basic

line length # of the prototype and the line length 0 of Fig. 7

bounded by ideal transformers with frequency-dependent turns

ratio. The transfer matrix of any of the latter circuits as

shown boxed within the dotted lines of Fig. 7 is given by

Cos o 1[1jZo sin 0 v’~ O

j 1
sin 0

z
Cos o o—

v’;

1~msino
Z(I

Cose 1(12)

whereas the transfer matrix of the basic prototype line

length is

[“

Cos 01 jZo sine’

~ sin 19~
Zo

Cos 0’
(13)
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Fig. 2. (a) Lowpass prototype filter, (b) using impedance inverters.
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Fig. 3. Typical characteristic of a Chebyshev equal-ripple distributed
lowpass prototype filter showing the first harmonic passband.

Fig. 4. Exact equivalent circuit of a transmission line.
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Fig. 5. (a) Section of a shunt-inductive-coupled bandpass
filter. (b) An impedance inverter.
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Fig. 6. More exact equivalent circuit of the impedance
inverter shown in Fig. 5(b).
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Fig. 7. Equivalent circuit of a typical central portion of a reactive-
coupled filter showing true impedance inverters, and cavities associ-
ated with ideal transformers having frequency-dependent turns
ratio.

Fig. 8. Equivalence to be established between (a) the circuit repre-
senting a cavity of a reactance-coupled filter and (b) the circuit repre-
senting a cavity of the impedance-inverter-coupled prototype.

The transfer matrices (12) and (13) must be regarded as those

of series resonators of the type shown in Fig. (4), not only

because we are working on the basis of impedance inverters

which require series-type resonators, but also because the

small shunt admittances of the Pi network are swamped by

the large adjacent admittances in the shunt-reactance-

coupled filter. The series-capacitance-coupled filter is a dual

circuit treated by the admittance inverter concept, and leads

to identical results. Hence the equivalence to be established

is shown in Fig. 8. Near the design frequency the shunt arms

of the Pi networks may be neglected, and the equivalence is

established by the equation

sin O sin (mJ/ao)
sinof=—= (14)

m @/@o

This is the required equation relating the reactance-coupled

filter to the prototype; it will be shown to give remarkably

good results, considering its simplicity. If the prototype filter

has Chebyshev characteristics given by the following inser-

tion-loss function [5], [6] (defined as the ratio of available

power PO from the generator to the power P~

the load),

PO

()

sin 0’
—-=l+h2T.2—
PL sin 190’ ‘

delivered to

(15)

then the insertion-loss function of the reactance-coupled fil-

ter is given by

[1
n-w

Po
sin —

— – 1 +- hzTn2 ~
@o

PL –
(16)

u sin eo’ “

The bandedge frequencies ox and m are given by

@o cdl @o ~2
— sinr — = — —sin7r-= sin Oo’. (17)
@l @o W2 ~o
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DESIGN PROCEDURE

The design procedure is now fully established. Given the

normalized bandedge frequencies of the filter al/oM and

cw/r.oo,(17) is solved for 00’. The solution is shown graphically
in Fig. 9. In an actual specification al and cw will be given,

but in this case coois readily found from Fig. 9 by finding the

value of O.’ with the required (U2/r,W)/(M/a@ ratio. The pass-

band ripple level is given in terms of the parameter h of (16)

either as

10 Ioglll (1 + W) (dB)

or as a VSWR related to h by the equation

v–l
h=-----=,

2VT
(18)

A value of n, the number of cavities in the filter, will be

decided by the stopband attenuation specification, and may

be found readily by application of (16).

The value of 00’ is related to the fractional bandwidth of

the equivalent prototype quarter-wave transformer, the

parameter required by the published tables [5], [6] by the

equation

Wg (or BW) = 4X . (19)
r

Hence the three parameters necessary to specify the proto-

type filter-namely, n, w~, and ripple VSWR—have been

established, and the step impedances or junction VSWR’S

of this prototype are then either found from the tables [5],

[6] or determined by a suitable approximation [as in (27)].’

The reactance values of the reactance-coupled filter are de-

termined from the prototype junction VSWRS as described

by Young [1], namely, by equating these to the VSWR’S of

corresponding reactance couplings of the actual filter, lead-

ing to the equation (refer to Fig. 1)

The electrical lengths @.,of the cavities are given by the

well-known formulas [1], [3]

(21)

where i=l, 2, . . . n.

1 It is worth recording a correction to (22) of reference [6], which
should read

Z, = Zn-,+, (n odd); Z, = S/Z.-,+l (n even),

A forther error occurs in Table 8 where results in BW columns 0.20 to
0.70 for VSWR values 1.01 and 1.02 should be interchanged.
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Fig. 9. Solution of (17).

COMPARISONWITH THEORIm OF COHN AND YOUNG

Cohn’s results [3] may be obtained by approximating

sin [r(u/o@] around w= m by z [(w/tiO) — 1]. The angle 60’ is

given by (19). Since the fractional bandwidth w of a narrow-

band filter is related to w~ by a factor 2, we have

(22)

With the further approximation (justified for narrowband

filters) sin 00’=00’, (17) reduces to

leading to the equation (Fig. 10 in Cohn [3])

(23)

Cohn’s low- to bandpass transformation is obtained from

(16), and is given by carrying out the above approximation to

the equation

n-u

sin —
at @o @o

—._

~ 1’ u sin O.’

which, using (23), reduces to

()2 ~–~
u’ w Wo

‘= /1 l\ “
(24

WI’

()
———
WI W2

This is (4) in Cohn [3] with guide wavelength replaced by

reciprocal of frequency, as required.
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Cohn’s expressions for the coupling reactance are ob-

tained by using the formulas for the junction VSWR’S in the

limiting case of a narrowband distributed lowpass prototype

filter as given by Young [I], i.e.,

2 glq’ _ gl
Vol = V.,n+l = — — – ~

7rw

1

(25)
4 WI’2 9<+19<

Vi,i+l = ; ~gi+lgi = -@-

for i=i, 2, . . . . (n– 1), where

(26)

Here the g, are the normalized elements of the lumped-ele-

ment lowpass prototype filter [2]. The coupling reactance

are given by (20), i.e.,

z,
~= /%- +q cm

Xi,i+l = Bi,i+l

fori=l,2, . . ..(1)l)

where r is the terminating resistance of the prototype filter.

Equations (26) and (27) are given in Figs. 5 and 10 in Cohn

[3], completing the derivation of all his formulas. These are

seen to be limiting forms of the new formulas in the case of

narrowband filters after approximating sin (mu/uo) by

m[(u/~O) — 1]. One result of this approximation is that the

theory fails to predict the harmonic passbands of the reac-

tance-coupled filter.

YOUNG’S THEORY

Young [I] bases his theory on the distributed Iowpass

prototype but needs to guess a value of 00’ to obtain a trial

prototype. He presents graphs of bandwidth contraction fac-

tor and movement of band center frequency to predict the

“distortion” caused by the frequency variation of the cou-

pling reactance, which in the new theory is given auto-

matically by (16). The information on bandwidth contrac-

tion factor was obtained by analyzing a number of filter de-

signs by digital computer. If the design specification is not

met by the first prototype, a modified prototype is chosen,

and the above process repeated. The theory will give good
results to bandwidths so large that the bandpass filter be-

comes a highpass filter for all practical purposes.

The theory presented in the present paper is limited to

filters up to approximately 40-percent bandwidth, which will

cover all normal requirements. Discussions follow on the

method adopted to test the theory, the errors involved, and

the theory’s range of applicability.
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Fig. 10, Theoretical and computed results of a filter expected to
give good agreement (Example 1 of text).

LIMITATIONS ON THE VALUB OF EXPERIMENTAL

AS COMPARED WITH COMPUTED RESULTS

For several reasons it would be rather difficult to establish

the validity of a microwave filter theory by measurements

on actual filters. One must be quite sure that the obstacle

susceptances actually have the assumed values; it is difficult

and expensive to achieve the very close tolerances which

must be held, and a large number of such filters would be

required to check the theory over a wide range of the various

parameters. Thus in order to test the validity of the theory,

the practice of previous authors has been adopted [1], [3]

and the theoretical predictions compared with the response

of idealized model filters found by computation on a high-

speed digital computer. Experience has shown that actual

filters give performances in very close agreement with the

computed results. The only practical case published which

appears to show a marked deviation [4] is open to some

doubt since in that case the inductive susceptances were

designed by use of an approximate theoretical formula

rather than by direct measurement.

The computer technique is open to the objection that ac-

tual filters differ from the idealized model in that the obstacle

susceptances are not exactly proportional to u (for capacitive

gap filters) or to k, (for waveguide filters). It can be shown,

however, that the deviation of a practical filter from the

idealized model is quite small, and is in a direction which

tends to improve the agreement between practice and theory.

Take, for example, the case of direct-coupled inductive-iris

waveguide filters. Inspection of graphic data [8] shows that

the deviation of the shunt susceptance values from their

idealized values over a 30-percent guide-wavelength band

is approximately 1 percent at the edges of this band. Since

this error not only is small but also has the same sign for
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Fig. 11. Theoretical and computed results of a filter designated as a
borderline case(Example 2 of text).

all the obstacles in the filter, it could not be expected to

cause any significant error in the ripple level, but only in

the cutoff frequencies. The effect of deviation from lumped

susceptance behavior is to introduce an additional frequency

transformation which distorts the frequency axis slightly.

For inductive irises in waveguide, the susceptances are

slightly larger than their idealized values at frequencies be-

low the midband frequency, and slightly smaller above the

midband frequency. Hence the lower frequency cutoff is

moved upward in frequency, and the higher frequency cutoff

is also moved upward in frequency. The overall bandwidth

of the filter tends to remain as predicted by the idealized

model. The attenuation on the low-frequency side of the

filter is increased, and on the high-frequency side it is de-

creased. Inspection of the results discussed in the following

section and presented in Figs. 10, 11, and 12 reveals that this

tendency would, fortuitously, give better agreement be-
tween the theory and the computed results. The case de-

picted in Fig. 12 illustrates the effect most clearly. The prac-

tical filter would be expected to have cutoff frequencies
approximately 1 percent higher than those predicted by the

idealized model, which would bring the practical perfor-

mance into closer agreement with the theory.

It would be interesting to carry out a more detailed in-

vestigation of the computed performance of the idealized

model filters compared with computed practical cases where

the actual variation of obstacle susceptance with frequency

[8] would be taken into the computer program.
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Fig. 12. Theoretical and computed results of a filter whose specifica-
tion lies outside the range of validity of the theory (Example 3 of
text).

LIMITATIONS OF THE NEW THEORY

Thus in order to test the validity of the theory, a very

large number of filters were designed for n= 2 to n= 12

elements having fractional bandwidths ranging from 10 to 43

percent and VSWR ripple levels from 1,01 to 1.50. The

computed response of each filter was then compared with

the theoretical response given by (16). It is found that except

in extreme cases, as specified below, the bandedge frequen-

cies and stopband attenuation are in excellent agreement

with the theory. Young [1] had established that the passband

ripple levels are reproduced quite accurately, and this was

confirmed except for very low VSWR le,vels (1.01 or 1.02) for

moderate or large bandwidth filters, where the small errors

in the theory tend to produce a slightly higher ripple level

in practice. As a criterion by which to establish the theory’s

range of applicability y it was decided to classify as acceptable

only those designs within about ~ 10-percent deviation

from the theoretical both for bandwidth and for attenuation

level (in dB) far into the stopbands. Most filters give results

well inside these limits, but Table I indicates the limiting

cases. The interpretation of Table I is that for a given num-

ber of cavities and a given bandwidth, the ripple VSWR must
be greater than the designated value. It has been established

that all the information given in Table I maybe summarized

by a very simple rule, namely, that the criterion requires the

value of R (the product of the prototype junction VSWR’S

[1], [5]) or of L (the maximum stopband attenuation level
of the prototype as given in the tables of reference [6]) to be

greater than a value given by

I

6ndBforn=2

L= 10 Iog,, ‘R;’)’ = 7ndBforn = 3 (28)

8n dB for n z 4.
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TABLE I least 66 dB on the low-frequency side and to at least 50 dB

lVIINIMUM PASSBAND VSWR RIPPLE LEVELS FOR FILTSRS GIVING AGREE-
on the high-frequency side.

mm WITHTHEORYTOWITHIN APPROXIMATELY& 10-P~Rc~NT
DEVIATIONIN BANDWIDTH AND IN STOPBAND ATrSNUA-

2) Bandwidth 20 Percent, Four Cavities, Chebyshev Ripple

TION LEVEL IN dB. [SEEALSO(28).] VSWR 1.10

Wg or BW I 0.2 I 0.3 0.4 I 0.5 1 0.6 0.7 I 0.8

11~’ I 9 113.5118 122.5127 131.5136

Bandwidth(%) I 10.O3I 15.1OI 20.23125.49130.93136.701 43.12

No. of Cavities
(n) I I I I I I

3 I I I 1.201 Ill

I I I I I ——

5 1.01 1.02 1.10 1.20

6 I / 1.0111.021 I 1.20/ I
l—l— l—l —–l— l— l—

7 I I I 1.011 I 1.1OI 1.50] 1.50

8 I I I 11.051 I I

9
— . — . . —. . —

10 1.05

11
—

12 1.05

Some examples of the results given by the theory will now

be presented. Most specifications for direct-coupled filters

are for narrow or moderate bandwidths, i.e., 10 percent or

less, and for these cases the agreement between the theo-

retical formula (16) and the computed results is almost per-

fect. Therefore, only one example of such a filter will be

given, the remaining examples indicating the limitations of

the theory in extreme cases.

EXAMPLES

1) Bandwidth 10 Percent, Six Cavities, Chebyshev Ripple

VSWR 1.10

This design is one considered by previous authors [1], [3]

and each obtained satisfactory results. Here, in order to

avoid interpolation from tabulated data, the bandedges are

chosen to be at values ol/uO = 0.9524, az/cOO= 1.0527, which

corresponds to a value of 00’ of exactly 9°. The comparison

between computed values and theory is given in Fig, 10,

which also indicates points computed by Cohn’s formula.
It will be seen that the theory predicts the location of the

bandedges exactly, although the passband response is

slightly distorted from the correct equal-ripple behavior.

The maximum deviation from theory of the attenuation in

the stopband is less than 1 dB to an attenuation level of at

This example, which is designated as a limiting case in

Table I, was also used as an illustration by Young [1].

Here the theoretical design based on tl~ = 18° gives U1/UO

=0.9093, Wz/uo=1.1116, i.e., a bandwidth of 20.23 percent.

The theoretical and computed values are shown in Fig. 11.

The computed results show the bandedges as 0.909 and 1.103,

giving an actual bandwidth of 19.4 percent. Young’s theory

[1] based on the same prototype predicts the bandedges at

0.902 and 1.110, i.e., a bandwidth of 20.8 percent, which is

slightly less accurate than the present theory in this in-

stance.

3) Bandwidth 30 Percent, Four Cavities, Chebyshev R@ple

1.05

This specification lies well outside the limits of applicabil-

ity as designated in Table I or by (28), and would not be

expected to give good results. A very similar example was

taken by Young [1], the difference being that the VSWR

specification was chosen as 1.07. The comparison between

theory and computed values in Fig. 12 shows that the present

theory predicts the position of the bandedges remarkably

closely, i.e., 0.860 compared with the theoretical 0.8707 at

the low-frequency edge, and 1.165 compared with 1.180 at

the high-frequency edge. The bandwidth is almost correct.

The most serious deviation from theory occurs in the predic-

tion of the stopband attenuation at low frequencies. In this

respect, however, the theory gives more accurate results

than formula (13) of Young [1] which predicts an even

higher attenuation at low frequencies and negative attenua-

tion at high frequencies (e.g., – 6 dB at a/aO= 1.5).

CONCLUSIONS

A new design theory for direct-coupled microwave filters

has been shown to give good agreement with computed re-

sponse characteristics. Basically the theory is derived by

combining and extending previous work done by Cohn [3]

and Young [1]. It has been shown that the essential char-

acteristics of direct-coupled filters may be predicted accu-

rately by a single insertion-loss formula (16). The values of

the coupling reactance are derived from published tables of

distributed lowpass prototype filters [5], [6], or in narrow-

band cases which may not be tabulated by use of approxi-

mate but very accurate formulas (25). A simple relationship

(28) specifies the range of design parameters (number of

cavities, bandwidth, ripple VSWR) for which the insertion-

Ioss formula (16) may be expected to give good results for
prediction of the bandedge frequencies and for the stopband

attenuation.

Since it is based on a single insertion-loss formula and on

tabulated or easily derivable prototype filter parameters, the

design technique is very suitable for practical applications.
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A Frequency Transformation for Commensurate

Transmission-Line Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract-Tbe frequency transformation W=I/S, where S= taah(yL),

is investigated for commensurate transmission-line networks consisting of

stubs, resistors, ideal transformers, and unit elements. This transforma-

tion takes transmission-line transformers into transmission-line lowpass

filters and vice versa, Iowpass (or bandstop) filters into bighpass (or band-

pass) filters and vice versa, and elliptic-function bandstop flters into

elliptic-function bandpass filters and vice versa. The practicality of the

transformation lies in the fact that element values of the transformed net-

work are easily related to the corresponding element values of the original

network. The transformation is useful because it provides an alternative

viewpoint for synthesis, and because it reduces the number of tables of

designs needed for various tilter types. Several examples of designs using

the transformation are given. One design is an unusual rtarrowband 3-dB

directional coupler.

I. INTRODUCTION

F

REQUENCY transformations are commonly used in

lumped-element network theory to convert a given

filter network into a related filter network. For exam-

ple, an often used frequency transformation is [1], [2]

S1~ As, (1)

where the symbol ~ stands for “is replaced by,” A is a
constant, the primed variable is that of the original network,

and the unprimed variable is that of the transformed net-

work.1 Transformation (1) is used to scale the bandwidth of

Manuscript received September 21, 1966; revised December 22,
1966. The work reported in this paper was supported by the U, S. Army
Electronics Command Laboratories, Fort Monmouth, N. J., under
Contract DA-28 -043-AMC-02266(E).

The author is with the Stanford Research Institute, Menlo Park,
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1Throughout this paper we shall use primed variables to represent
parameters of the original network and unprimed variables for those in
the transformed network.

the existing network to another preferred value. Other com-

monly used frequency transformations in lumped filter

theory are [I], [2]

(lowpass to highpass
St ~ A/s

(2)

transformation)

“+”(3+(-3(lowpass to bandpass (3)

transformation)

St -+ “(:;+()
(Iowpass to bandstop

@o
(4)

— transformation).
s

It is emphasized that in all cases the usefulness of these trans-

formations lies in the fact that their effects on the responses

of the network are easily related to changes in the element

values of the network. Because such frequency transforma-

tions are available, a given Iowpass filter may function as a

prototype for a number of different types of filters, obviating

the compilation of a multitude of designs for lowpass, high-

pass, bandpass, and bandstop filters.

Analogous transformations would be equally useful for

commensurate transmission-line networks, if they could be

developed. For the special class of commensurate transmis-

sion-line networks consisting of open- and short-circuited

stubs, ideal transformers, and resistors, but without unit

elements [18 ] (i.e., quarter-wavelength lines), transforma-

tions (1) through (4) can indeed be used. In most cases, how-

ever, realization of commensurate transmission-line net-

works without unit elements is impractical or impossible.

Unfortunately, in the more general case of commensurate
transmission-line networks, consisting of open- and short-

circuited stubs, ideal transformers, resistors, and unit ele-


